

DCO2520

DATA STRUCTURES AND ALGORITHMS

BY

PATRICK WONG

OFFICE : P6809

TEL : 27888520

EMAIL : Patrick.Wong@cityu.edu.hk

MODULE LOCKER : 98DCO2520�
Lecture Content

Introduction of abstract data types, data structures and algorithms.

Techniques for building and processing data structures

Introduction of common data types such as arrays, lists and trees

Introduction of sorting and searching algorithms

�
OBJECTIVES

Upon completion of this course, you should be able to construct and manipulate data structures such as stacks and trees and gain an appreciation of the importance of algorithm design, particularly related to the area of sorting and searching where processing time can be an important factor.

�
TEACHING METHODS

Lecture : 2 hours per week

Tutorial/Lab : 2 hour per week

Assessment

Coursework : 30% (Lab Exercise and assignments)

Examination: 70%

Assignments will be graded on the approach used, the quality of the algorithm and the specification of the problem. Good programming practices are assumed. Students are expected to spend extra time for self-study and assigned reading.

�
BOOK LIST

Essential Reading

"Data Structures and Algorithms Using C and C++" by A. Tenenbaum, Y. Langsam, and M. Augenstein

Recommended Reading

"ANSI C" by Kenneth Barclay

�
POINTER VARIABLES

Must be declared in the declaration section of your program.

Can be of type pointers to int, float, char,...

Occupied no static memory at time of declaration. (dynamic variable)

Memory space are assigned either using "&" or the library function 'malloc(int)';

Dynamic variable occupying memory space from the heap can be returned by the library function 'free(ptr)'.

The header file "stdlib.h" should be included for the prototype of 'malloc' and 'free'.

�
Example :

int num1, num2;

int i,j;

float fahr;

int *p, *q;

float *fp;

...

p = &num1;	/*get addr of num1*/

q = &num2;

fp = &fahr;

...

p = 3; / num1 gets 3 */

*q = *p;/* num2 gets 3 */

...

i = *p; 		/* i gets data at "p" */

j = *q; 		/* j gets data at "q" */

printf("\n%d %d %d %d", *p, *q, num1, num2);

Four 3's would be printed.

What would i and j be ?

�
Pointers may be initialized at compilation time.

int i, *p = &i;

p is initialized to the address of i.

The following is illegal and dangerous

void main()

{

int *p;

*p=132;

printf(�%d�, *p);

}

�The declaration of pointer variables do not provide any storage for data

���int *p;

*p=132;

printf(�%d�, *p);

�
int *p;

p=(int)malloc(sizeof(int));

*p=132;

printf(�%d�, *p);

�
�
�
Pointers and Array

As an address, pointers have an integer value which can be manipulated. They can be used to process arrays.

int grade[10], *p;

"grade" is an array of 10 integers and "p" is a pointer to an integer type.

An array name without a subscript is a pointer.

grade = address of the grade array

grade[4] =	value of the 5th element

�
We can write

					p = &grade[0];

or

					p = grade;

And since pointers can be manipulated arithmetically, we can write:

for(p=grade; p<&grade[10]; p++)

				printf("\n%d", *p);

�
The most important use of pointers in "C" is to pass arguments or data to and from functions.

As we have seen for scanf(), pointers must be passed in order for the function to change the variable.

int i,j;

scanf("%d%d", &i, &j);

scanf() wrote into the storages at addresses of i and j.

�
Consider the following program :

#include <stdio.h>

main()

{

int i=0, j=0, sum=0;

void add(int, int, int);

i = 2;

j=3;

add(i,j, sum);

printf("\nThe sum of i and j is %d �, sum);

�
/*definition of function add()*/

void add(int a, int b, int c)

{

c = a + b;

return;

}

ANYTHING WRONG ?

�
The prototype for malloc() is :

	char * malloc (int)

Example :

int *pi;

float * pf;

...

pi = (int*)malloc(2);

pf = (float*)malloc(4);

�
sizeof(type) is provided by c to safe guard implementation variations.

	float * pt;

	pt = (float*)malloc(sizeof(float));

�
POINTERS AND STRUCTURES

struc student {

	int age;

	float salary;

	}; /*template for structure*/

typedef struc student STUDENT; /*user defined type*/

STUDENT *ps; /*pointer variable*/

ps = (STUDENT*)malloc(sizeof(STUDENT));

/*storage obtained*/

* Some examples of structures

(a)

struc example{

	int i;

	char j[5];

	}e1;

�
(b)

struc example{

	char i;

	int *j;

	}e2;

�
 (c)

struc example{

	int val;

	struct example *next;

	} a_node;

Example :

a_node.val = 100;

a_node.next=(struc example*) malloc (sizeof (struc example));

�
How do you assign a value into the 'val' of a_node.next ?

Example :

struc example *head, *tail;

head = (struc example*)malloc(sizeof(struc example));

*head.val = 12;

or

head->val = 12;

�
LINKED LIST

typedef struc item{

	int val;

	struct item *next;

	} ITEM, *PITEM;

/* To build a linked list of 1,2,3,4,5 */

main()

{

 PITEM head, current;

 head = (PITEM) malloc(sizeof(ITEM));

 head->val = 1;

 current = head;

 for(i=2;i<=5;i++){

	current->next=(PITEM)malloc(sizeof(ITEM));

	current = current->next;

	current->val=i;

	}

	current->next = NULL;

}

�
/*To print the linked list */

for(current=head;current!=NULL;current=current-> next)

	printf("\n%d",current->val);

How do you insert a node ?

temp=(PITEM)malloc(sizeof(ITEM));

temp->val=4;

temp->next= NULL;

prev->next=temp;

temp->next=current;

�
How do you delete a node ?

temp=head->next;

head->next=temp->next;

free((PITEM)temp);

�
/* To print a stream of input data in reversed order */

#include <stdio.h>

#include <stdlib.h>

typedef struct node Node;

typedef Node *PtrNode;

struct node{

	int Data;

	PtrNode link;

};

main()

{	int data;

	PtrNode head=NULL;

	PtrNode new, ptr;

	printf("Input data:\n");

	while(scanf("%d",&data),data>=0){

		if ((new=(PtrNode)malloc(sizeof(Node)))==NULL) 			{	printf("No space");

				exit;

			}

		new->Data=data;

		new->link=head;

		head=new;

		}

�
/* print list */

	printf("\n\nReversed data: \n);

	ptr = head;

	while(ptr != NULL){

		printf("%d\n",ptr->data);

		ptr = ptr->link;

	}

}

�
Other list type :

	. Doubly linked list

	. Circular linked list

	. Doubly linked circular list

		DCO2520 DATA STRUCTURES & ALGORITHMS	

			

1.� PAGE �10�

			

			

